MEASURE: WHY?

Measure: Why?

• Only standard-compliant measurements for safety in electromagnetic fields are acceptable, even for someone who is not particularly concerned with electromagnetic fields.

• The electric and magnetic fields must be measured exclusively in the near field.

• Non-directional (isotropic) measurement is performed by the standards.

• The permitted field strengths depend on the frequency. The measuring instrument must therefore be sensitive enough, have a wide dynamic range, and be capable of measurements in the near field.

MEASURE: HOW?

Measure: How?

• Measurement means comparison with a known quantity. Field strength units are also defined by national standards, so the measuring instruments are calibrated against known quantities. Since field strength units are internationally defined, we can compare field strengths that are traceable to these standards.

• Measuring equipment for outdoor use must be robust, dustproof, and weatherproof.

• Simple operation avoids mistakes and leads to reliable and dependable results.

• Minimum down time. We calibrate instruments in our own laboratory in rapid time.

• Personal monitors are worn on the body.

MEASURE: RIGHT!

Measure Right!

• Personal monitors are worn on the body.

• Simple operation avoids mistakes and leads to reliable and dependable results.

• Minimum down time. We calibrate instruments in our own laboratory in rapid time.

• Personal monitors are worn on the body.

• Area monitors are fixed measuring stations.

• Remote control.

MONITOR OR METER?

Monitor or meter?

• Monitoring work on the fields and signal visibility: which field strength approach is permitted at all. The field strength approaches the permitted limit value. Company safety officer can use them to protect the overall workplace. Occupation brings into contact with electromagnetic fields, as is possible with meters that are only occasionally exposed to them. Data logger functions record the exposure levels.

• High tension lines, or transformer stations.

• Our three sites are located at Hauppauge, Long Island (USA), Pfullingen (Germany) and Cisano (Italy). Our goal is to provide you, the user, with products tailored exactly to your needs.

NARDA SAFETY TEST SOLUTIONS

Narda Safety Test Solutions is a global leader in the development and production of measuring equipment for electric, magnetic, and electromagnetic fields (EMF), and that is continually building upon its reputation in this sector.

We specialize in selective measurement equipment, monitoring transmitters and industrial equipment, high tension lines, or transformer stations. On site, we provide overall visual inspection as well as personnel and personal radiation monitors.

THREE LOCATIONS – ONE GOAL

Our three sites are located at Hauppauge, Long Island (USA), Pfullingen (Germany) and Cisano (Italy). Our goal is to provide you, the user, with products tailored exactly to your needs, using the highest quality in cutting edge technology.

WHAT WE OFFER

As a global leader in the development and production of measuring equipment for electric, magnetic, and electromagnetic fields (EMF), we offer a wide range of products for human safety in electromagnetic fields (EMF) including broadband measuring instruments, selective measurement equipment, monitoring, inspection, and personal radiation monitors. Under our CEM brand, we offer instruments for assessing the electromagnetic compatibility (EMC) of devices. As an employee, you can benefit from our program of services, including housing, catering, and training.

MEASURE: Why?

- Minimum down time: We calibrate instruments in rapid time.
- Only standard-compliant measurements are acceptable.
- The electric and magnetic fields must be measured exclusively in the near field.
- Non-directional (isotropic) measurement is performed by the standards.
- The permitted field strengths depend on the frequency.
- Measuring equipment for outdoor use must be robust, dustproof, and weatherproof.
- Simple operation avoids mistakes and leads to reliable and dependable results.
- Minimum down time. We calibrate instruments in our own laboratory in rapid time.
- Personal monitors are worn on the body.

MEASURE: How?

- Measurement means comparison with a known quantity.
- Field strength units are also defined by national standards, so the measuring instruments are calibrated against known quantities.
- Measuring equipment for outdoor use must be robust, dustproof, and weatherproof.
- Simple operation avoids mistakes and leads to reliable and dependable results.
- Minimum down time. We calibrate instruments in our own laboratory in rapid time.

MEASURE: Right!

- Personal monitors are worn on the body.
- Simple operation avoids mistakes and leads to reliable and dependable results.
- Minimum down time. We calibrate instruments in our own laboratory in rapid time.
- Personal monitors are worn on the body.

MONITOR OR METER?

- Monitoring work on the fields and signal visibility: which field strength approach is permitted at all.
- The field strength approaches the permitted limit value.
- Company safety officer can use them to protect the overall workplace.

NARDA SAFETY TEST SOLUTIONS

Narda Safety Test Solutions is a global leader in the development and production of measuring equipment for electric, magnetic, and electromagnetic fields (EMF), and that is continually building upon its reputation in this sector.

We specialize in selective measurement equipment, monitoring transmitters and industrial equipment, high tension lines, or transformer stations. On site, we provide overall visual inspection as well as personnel and personal radiation monitors.

THREE LOCATIONS – ONE GOAL

Our three sites are located at Hauppauge, Long Island (USA), Pfullingen (Germany) and Cisano (Italy). Our goal is to provide you, the user, with products tailored exactly to your needs, using the highest quality in cutting edge technology.

WHAT WE OFFER

As a global leader in the development and production of measuring equipment for electric, magnetic, and electromagnetic fields (EMF), we offer a wide range of products for human safety in electromagnetic fields (EMF) including broadband measuring instruments, selective measurement equipment, monitoring, inspection, and personal radiation monitors. Under our CEM brand, we offer instruments for assessing the electromagnetic compatibility (EMC) of devices. As an employee, you can benefit from our program of services, including housing, catering, and training.
LEADERS IN EMF MEASUREMENT
EVERYTHING YOU NEED!

• Occupational safety. Sensitivity zones must be defined and observed when working in the immediate vicinity of antennas.

• Industrial safety. 60 Hz is the normal frequency in industry – whenever the application, the dimensions of the installation, and the design of the equipment allow it.

• Human safety in medicine. Magnetic Resonance Imaging (MRI) and Magnetic Resonance Angiography (MRA) – there must be no direct contact between the magnet and the patient, and medical staff must not be in the room.

• Public safety. Close to high tension cables and transformer stations, proof that the magnetic field properties specified in the international standard EN 60470-2 are observed and the home.

• Domestic appliances. Electric and magnetic field regulations, among others, are specified in industry and medicine.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.

• Protecting people and informing the general public. People want uninterrupted communications channels, but at the same time, the radioactivity levels have to be kept low.