
data/SignalShark_TxTable_Template.xltx
Tabelle1

		Short Name		Table Xy

		Comment		This is a text comment

		Name		Fcent (MHz)		CBW (MHz)		Exp. Signal Type		Comment		Demod. Type







doc/ReadMe-Script_nslconvertcsvtxtab.pdf


 


NSTS 2021-12  ￜ  SignalShark Python Scripts  ReadMe  ￜ  Subject to change without notice www.narda-sts.com 1 / 2 
 


ReadMe SignalShark Python Scripts 


Script “nslconvertcsvtxtab” 
 


The script “nslconvertcsvtxtab.py” allows the user to convert template-generated csv-based SignalShark transmitter 
tables into an xml file. 


The csv-based transmitter table files to be used for this script are generated using the excel template separately 
provided in the file “SignalShark_TxTable_Template.xltx”. The user is required to manually update the transmitter table 
information in the excel template and save it as a CSV file. When the script “nslconvertcsvtxtab.py” is executed through 
the Narda Script Launcher Application, the user is prompted to select the CSV file containing the transmitter table 
information. A dialog box shows the conversion progress. A pop-up dialog appears as soon as the conversion is 
completed. The converted XML file is saved in the parent folder with the same name but an xml file extension. 


 


 


 
  







 


NSTS 2021-12  ￜ  SignalShark Python Scripts  ReadMe  ￜ  Subject to change without notice www.narda-sts.com 2 / 2 
 


Procedure 
1. To create SignalShark Transmitter Tables in csv, the excel 


template “SignalShark_TxTable_Template.xltx” is used. The 
user can add a Short Name of choice and comments (if 
needed). The transmitter table entries can be manually added: 


 


 


 


5. When the script is executed, the user is asked to select the 
(.csv) file. Enter the path to the above generated CSV file 
using the excel template. 


6. Upon file selection, the script converts all the transmitter table 
entries into the XML file. A progress bar appears on the screen 
showing the status of file conversion: 


 


 


9. Press “Ok” to terminate the script. 
10. The resulting .xml file shows the data for each transmitter as 


separate sub-elements of the node as shown below: 


 


Narda Safety Test Solutions GmbH 
Sandwiesenstrasse 7 
72793 Pfullingen, Germany 
Phone +49 7121 97 32 0 
info@narda-sts.com 
 
www.narda-sts.com 


Narda Safety Test Solutions 
North America Representative Office 
435 Moreland Road 
Hauppauge, NY11788, USA 
Phone +1 631 231 1700 
info@narda-sts.com 


Narda Safety Test Solutions GmbH 
Beijing Representative Office  
Xiyuan Hotel, No. 1 Sanlihe Road, Haidian 
100044 Beijing, China  
Phone +86 10 6830 5870  
support@narda-sts.cn 


 


® Names and Logo are registered trademarks of Narda Safety Test Solutions GmbH – Trade names are trademarks of the owners. 





		Procedure





doc/ReadMe-Script_nslconvertidatxtab.pdf


 


NSTS 2021-12  ￜ  SignalShark Python Scripts  ReadMe  ￜ  Subject to change without notice www.narda-sts.com 1 / 2 
 


ReadMe SignalShark Python Scripts 


Script “nslconvertidatxtab” 
 


The script “nslconvertidatxtab “ allows to convert the CSV-based transmitter tables of the IDA device into XML-based 
transmitter tables of SignalShark. 


Since the IDA transmitter tables are not readily available in CSV format, the user is required to copy the IDA transmitter 
table data and save it to the CSV file format before running the script. The script is executed through the Narda Script 
Launcher applications and it prompts the user to select a CSV-based IDA transmitter table. Once the file is selected by 
the user, its contents are verified to check the presence of transmitter table data. The file is then converted to 
SignalShark XML format for the transmitter tables, and saved in the parent directory with the same name for the xml 
file extension.   


 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 







 


NSTS 2021-12  ￜ  SignalShark Python Scripts  ReadMe  ￜ  Subject to change without notice www.narda-sts.com 2 / 2 
 


Procedure 
 


1. To do this, the corresponding transmitter table is marked in 
the PC software IDA-Tools and copied as CSV formatted text 
to the clipboard of the PC using the function "Copy actual View 
to Clipboard". 


 


 


4. To convert the IDA transmitter table from CSV to XML, select 
the script titled “Convert IDA to SignalShark tx table”: 


 


 


 


7. Press “Ok” to end script.
 
Narda Safety Test Solutions GmbH 
Sandwiesenstrasse 7 
72793 Pfullingen, Germany 
Phone +49 7121 97 32 0 
info@narda-sts.com 
 
www.narda-sts.com 


Narda Safety Test Solutions 
North America Representative Office 
435 Moreland Road 
Hauppauge, NY11788, USA 
Phone +1 631 231 1700 
info@narda-sts.com 


Narda Safety Test Solutions GmbH 
Beijing Representative Office  
Xiyuan Hotel, No. 1 Sanlihe Road, Haidian 
100044 Beijing, China  
Phone +86 10 6830 5870  
support@narda-sts.cn 


 


® Names and Logo are registered trademarks of Narda Safety Test Solutions GmbH – Trade names are trademarks of the owners. 





		Procedure





doc/ReadMe-Script_nslconvertsgram.pdf


 


NSTS 2021-12  ￜ  SignalShark Python Scripts  ReadMe  ￜ  Subject to change without notice www.narda-sts.com 1 / 2 
 


ReadMe SignalShark Python Scripts 


Script “nslconvertsgram” 
 


The script “nslconvertsgram” allows to convert SignalShark spectrogram data from HDF5 (.h5) file format to .csv file 
format. 


The script is executed through the Narda Script Launcher application and it prompts the user to select an HDF5 file 
containing the spectrogram data that needs to be converted into the CSV file format. Once the file is selected by the 
user, its contents are verified to check the presence of spectrogram data. The file is then converted to CSV format, and 
saved in the parent directory with a new name.   


 


 


 
  







 


NSTS 2021-12  ￜ  SignalShark Python Scripts  ReadMe  ￜ  Subject to change without notice www.narda-sts.com 2 / 2 
 


Procedure 
 
The (.h5) files logged by SignalShark in the Datalogger folders 
have the spectrogram data present in them. These files can 
be viewed in HDFView Application: 


 


 


3. When the script is executed, the user is asked to select the 
(.h5) file from the file picker. 


4. Upon file selection, the script validates the presence of 
spectrogram data in the (.h5) file. If the validation succeeds, a 
progress bar appears on the screen showing the status of file 
conversion: 


 


 


7. Press “Ok” to terminate script. 
8. The resulting .csv file shows the measurement specifications 


and also provides the array of pPk level values against the 
timestamps: 


 


 


Narda Safety Test Solutions GmbH 
Sandwiesenstrasse 7 
72793 Pfullingen, Germany 
Phone +49 7121 97 32 0 
info@narda-sts.com 
 
www.narda-sts.com 


Narda Safety Test Solutions 
North America Representative Office 
435 Moreland Road 
Hauppauge, NY11788, USA 
Phone +1 631 231 1700 
info@narda-sts.com 


Narda Safety Test Solutions GmbH 
Beijing Representative Office  
Xiyuan Hotel, No. 1 Sanlihe Road, Haidian 
100044 Beijing, China  
Phone +86 10 6830 5870  
support@narda-sts.cn 


 


® Names and Logo are registered trademarks of Narda Safety Test Solutions GmbH – Trade names are trademarks of the owners. 





		Procedure





doc/ReadMe-Script_nslconvertspectrum.pdf


 


NSTS 2021-12  ￜ  SignalShark Python Scripts  ReadMe  ￜ  Subject to change without notice www.narda-sts.com 1 / 2 
 


ReadMe SignalShark Python Scripts 


Script “nslconvertspectrum” 
 


The script “nslconvertspectrum” allows to convert SignalShark spectrum data from HDF5 (.h5) file format to .csv file 
format. 


The script is executed through the Narda Script Launcher Application. It prompts the user to select an HDF5 file 
containing the spectrum data that needs to be converted into the CSV file format. Once the file is selected by the user, 
its contents are verified to check the presence of spectrum data. The file is then converted to CSV format, and saved 
in the parent directory with a new name and a csv file extension.   


 


 
  







 


NSTS 2021-12  ￜ  SignalShark Python Scripts  ReadMe  ￜ  Subject to change without notice www.narda-sts.com 2 / 2 
 


Procedure 
 
The (.h5) files logged by SignalShark in the Datalogger folders 
have the spectrum data present in them. These files can be 
viewed in HDFView Application: 


 


 


3. When the script is executed, the user is asked to select the 
(.h5) file from the file picker. 


4. Upon file selection, the script validates the presence of 
spectrum data in the (.h5) file. If the validation succeeds, a 
progress bar appears on the screen showing the status of file 
conversion: 


 


 


7. Press “Ok” to terminate script. 
8. The resulting .csv file shows the measurement specifications 


and also provides a list of the logged frequency values against 
pPk and RMS level values: 


 


Narda Safety Test Solutions GmbH 
Sandwiesenstrasse 7 
72793 Pfullingen, Germany 
Phone +49 7121 97 32 0 
info@narda-sts.com 
 
www.narda-sts.com 


Narda Safety Test Solutions 
North America Representative Office 
435 Moreland Road 
Hauppauge, NY11788, USA 
Phone +1 631 231 1700 
info@narda-sts.com 


Narda Safety Test Solutions GmbH 
Beijing Representative Office  
Xiyuan Hotel, No. 1 Sanlihe Road, Haidian 
100044 Beijing, China  
Phone +86 10 6830 5870  
support@narda-sts.cn 


 


® Names and Logo are registered trademarks of Narda Safety Test Solutions GmbH – Trade names are trademarks of the owners. 





		Procedure





doc/ReadMe-Script_nslconvertsrmtab.pdf


 


NSTS 2021-12  ￜ  SignalShark Python Scripts  ReadMe  ￜ  Subject to change without notice www.narda-sts.com 1 / 2 
 


ReadMe SignalShark Python Scripts 


Script “nslconvertsrmtab” 
 


The script “nslconvertsrmtab” allows the user to convert CSV-based SRM service table to SignalShark XML-based 
transmitter table.  


The script is executed through the Narda Script Launcher applications. It prompts the user to select a CSV-based SRM 
transmitter table. Once the file is selected by the user, its contents are verified to check the presence of transmitter 
table data. The file is then converted to SignalShark XML format for the transmitter tables, and saved in the parent 
directory with the same name for the xml file extension.   


 


 


 
  







 


NSTS 2021-12  ￜ  SignalShark Python Scripts  ReadMe  ￜ  Subject to change without notice www.narda-sts.com 2 / 2 
 


Procedure
1. To convert this CSV-based SRM transmitter tables into XML 


format, open the Narda Script Launcher application and select 
the “nslconvert” tab: 


 


2. Then select the script “Convert SRM Service Table”. 
3. When the script is executed, the user is asked to select the 


(.csv) file containing SRM Service Table information. Enter the 
path to the csv file. 


4. Upon file selection, the script converts all the transmitter table 
entries into the XML file. A progress bar appears on the screen 
showing the status of file conversion: 


 


5. Once the conversion is done, a pop-up dialog provides the 
confirmation to the user. 


 


The converted (.xml) file is saved in the same directory as that 
of the (.csv) file and it derives its name from the parent file. 


6. Press “Ok” to terminate script. 
7. The resulting .xml file shows the data for each transmitter as 


separate sub-elements of the node as shown below: 


 


 
 


 


Narda Safety Test Solutions GmbH 
Sandwiesenstrasse 7 
72793 Pfullingen, Germany 
Phone +49 7121 97 32 0 
info@narda-sts.com 
 
www.narda-sts.com 


Narda Safety Test Solutions 
North America Representative Office 
435 Moreland Road 
Hauppauge, NY11788, USA 
Phone +1 631 231 1700 
info@narda-sts.com 


Narda Safety Test Solutions GmbH 
Beijing Representative Office  
Xiyuan Hotel, No. 1 Sanlihe Road, Haidian 
100044 Beijing, China  
Phone +86 10 6830 5870  
support@narda-sts.cn 


 


® Names and Logo are registered trademarks of Narda Safety Test Solutions GmbH – Trade names are trademarks of the owners. 





		Procedure





nslconvertcsvtxtab.py
#!/usr/bin/env python

##############################################################################
##
## Copyright (C) 2021 Narda Safety Test Solutions GmbH.
## Contact: www.narda-sts.com
##
## Redistribution and use in source and binary forms,
## with or without modification, are permitted provided that the following
## conditions are met:
##
## 1.) Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
##
## 2.) Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## 3.) Neither the name of the copyright holder nor the names of its
## contributors may be used to endorse or promote products derived from this
## software without specific prior written permission.
##
## 4.) EXPORT CONTROL
## The Software, including technical data /cryptographic software,
## may be subject to, German, European Union and U.S. export controls and
## may be subject to import or export controls in other countries.
## The Licensee agrees to strictly comply with all applicable import and
## export regulations. He specifically agrees, that he must not disclose or
## otherwise export or re-export the Licensed Software or any part thereof
## delivered under this end user license agreement (EULA) to any country
## (including a national or resident of such country) without a valid export
## or import license. Please be aware that the Software may contain
## US-Content, therefor the Licensee represent and warrant that he is not a
## citizen of, or otherwise located within, an embargoed nation (including
## without limitation Iran, Syria, Sudan, Cuba, North Korea) and that he is
## not otherwise prohibited under the Export Laws from receiving the Software.
## All rights to Use the Software are granted on condition that such rights
## are forfeited if the Licensee fails to comply with
## the terms of this Agreement.
##
## 5.) SEVERABILITY
## Should any provision of this Agreement be or become invalid, ineffective
## or unenforceable, the remaining provisions of this Agreement shall be
## valid. The parties agree to replace the invalid, ineffective or
## unenforceable provision by a valid, effective and enforceable provision
## which best meets the commercial intention of the parties.
## The same shall apply in case of omissions.
##
## 6.) APPLICABLE LAW AND PLACE OF JURISTICATION
## This Agreement shall be constituted under the law of Germany.
## The United Nations Convention on the International Sale of Goods
## shall not apply to this Agreement. The Place of Jurisdiction for any
## dispute between the Parties shall be Tübingen (Germany).
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
## “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
## TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
## PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Narda Safety Test Solutions GmbH
## BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
## CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
## SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
## INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
## CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
## ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
## POSSIBILITY OF SUCH DAMAGE.
##
##############################################################################


from pathlib import Path
import wx
from nardascripting.base.usrscriptbase import *
from nardascripting.base.signalsharkdev import *
from nardascripting.base.measthread import *
import nardascripting.base.toolbox as tb
import time
from lxml import etree as ET
from lxml import objectify
import csv
import numpy as np


class ConvertTemplateCSVTab(UsrScriptBase):
    """User script class"""

    def __init__(self, main_gui, dev=SignalSharkDev()):
        """Initialization. Please leave this line unchanged"""
        super().__init__(main_gui, dev, __file__)

        # Script settings.
        # -------------------------------------------------------------------------------
        # Please adapt the following lines of code according to your script.
        self._tab_name = "nslconverter"
        self._scr_title = "Convert a Template Generated CSV Tx table to XML V1.1"
        self._scr_description = "Converts Template-based CSV Tx table to XML based SignalShark Tx table V0.9"
        # self._icon_path = self.script_path.joinpath("NardaScriptLauncher_example01.png")
        self._list_prio = 5
        self._nsl_executed_behavior = NSL_Executed_Behaviors.MINIMIZE_NSL

        # Add class variables if needed
        # -------------------------------------------------------------------------------
        # self.my_variable = None

    def _run_script(self, args):
        """
        Script main function
        This method is called when a user clicks on the corresponding script button.
        """

        # Show file browser for file selection:
        dlg = wx.FileDialog(self.frm_dlghelper, "Open CSV file containing Template-based Tx table", "", "",
                            "CSV files (*.csv)|*.csv",
                            wx.FD_OPEN | wx.FD_FILE_MUST_EXIST)

        self.ShowDlgModalTop(dlg)
        file2convert = dlg.GetPath()
        dlg.Destroy()
        if not file2convert:
            self.MessageBoxModal("No valid file selected.", "Info",
                                 wx.OK | wx.ICON_INFORMATION)
            return

        file_name = file2convert

        # Determine destination folder:
        csv_file_path = Path(file_name)
        result_folder = csv_file_path.parent
        SignalShark_txtab_path = Path("D:\\Narda_SignalShark\\Configuration\\TransmitterTables")
        if SignalShark_txtab_path.exists():
            if self.MessageBoxModal(
                    "Should the result be saved directly "
                    "into the transmitter table folder of SignalShark ({})?".format(SignalShark_txtab_path),
                    "Save to TxTable folder?", wx.YES_NO | wx.ICON_QUESTION) == wx.YES:
                result_folder = SignalShark_txtab_path

        # Create an additional measurement thread to keep the GUI alive.
        # With "args=[param1, parm2, paramn]" you can pass some optional parameters to the measurement thread.
        mthread = MeasDlgThread(main_gui=self.main_gui, callback=ConvertTemplateCSVTab._run_measurement,
                                args=[file_name, result_folder])

        # Start the measurement thread and show a visualization (progress) dialog.
        dlg_result = mthread.start_measurement()
        if dlg_result == wx.ID_OK:
            self.main_gui.MessageBoxModal("Conversion done.", "Info")
        else:
            self.main_gui.MessageBoxModal("Conversion canceled.", "Info")

    @staticmethod
    def _run_measurement(stopevent, update_progress, wait_for_stopevent, file_name: str, result_folder: Path):
        """ Main method of the measurement thread that handles a time consuming measurement.

        :param stopevent: Thread flag that indicates whether the procedure should be finished/cancelled
        :param update_progress: Delegate method to update a progress bar, message string and icon
        :param wait_for_stopevent: Delegate method to wait until stopevent is raised with possibility to show a message.
        :param file_name: Name of the file as a st
        :param result_folder: Custom parameter to handover the target folder path to save results
        :return:
        """
        # Prepare progress value calculation. Progress is a value from 0.0 to 1.0
        # Open csv file:
        # -------------------------------------------------------------------------------
        data_file = None
        try:
            # Generate xml filename:
            # -------------------------------------------------------------------------------
            csv_file_path = Path(file_name)
            txtable_name = csv_file_path.name.replace(".csv", "")
            xml_file_name = result_folder.joinpath(txtable_name + ".xml")

            # Prepare progress value calculation. Progress is a value from 0.0 to 1.0
            # Open csv file:
            # -------------------------------------------------------------------------------
            data_file = open(file_name, "r")
            csv_reader = csv.reader(data_file, delimiter=",")

            # Get number of lines for progress bar
            lines = sum(1 for _ in csv_reader)
            data_file.seek(0)
            progress = 0.0
            progress_step = 1.0 / lines

            # Show Message "Conversion in progress"
            update_progress(msg="Conversion in progress", progress=0.0, btn_style=wx.CANCEL)

            # Create xml root node
            xml_doc = ET.Element('Narda_3300_TransmitterTable')

            count = 1
            label = 1
            shortname = ""
            # Create xml additional nodes with corresponding attributes
            for _ in csv_reader:

                # Periodically check whether the user has clicked the cancel button,
                # If yes, exit thread after allowing the stop event to synchronize.
                stopevent.wait(0.05)
                if stopevent.is_set():
                    return

                if count == 1:
                    shortname = _[1]

                elif count == 2:
                    comment = _[1]
                    sub_node = ET.SubElement(xml_doc, 'Info')
                    ET.SubElement(sub_node, 'ShortName', type='string', size='1').text = str(shortname)
                    ET.SubElement(sub_node, 'Comment', type='string', size='1').text = str(comment)

                elif count == 3 or count == 4:
                    pass

                elif count == 5:
                    sub_node = ET.SubElement(xml_doc, 'Data')
                    ET.SubElement(sub_node, 'SortCriterion', type='ENUM_PARAM_TRANSMITTER_TABLE_SORT_CRITERIA', size='1'
                                  ).text = 'TRANSMITTER_FCENT'
                    ET.SubElement(sub_node, 'SortOrder', type='ENUM_PARAM_TRANSMITTER_TABLE_SORT_ORDER', size='1'
                                  ).text = 'ASC'
                    ET.SubElement(sub_node, 'NoOfTransmitters', type='ulong', size='1'
                                  ).text = str(lines - 5)

                else:
                    sub_node = ET.SubElement(xml_doc, 'Tx{:0>4}'.format(label))
                    ET.SubElement(sub_node, 'Name', type='string', size='1').text = _[0]
                    ET.SubElement(sub_node, 'Fcent', type='double', size='1').text = _[1]
                    ET.SubElement(sub_node, 'CBW', type='double', size='1').text = _[2]
                    ET.SubElement(sub_node, 'ExpectedSignalType', type='string', size='1').text = _[3]
                    ET.SubElement(sub_node, 'Comment', type='string', size='1').text = _[4]
                    ET.SubElement(sub_node, 'AnalogAudioDemodType', type='ENUM_PARAM_ANALOG_AUDIO_DEMOD_TYPES', size='1'
                                  ).text = _[5]
                    label += 1
                count += 1
                progress += progress_step
                update_progress(progress=progress)

            # Retaining xml tree structure and defining encoding
            tree_output = ET.tostring(xml_doc, pretty_print=True, xml_declaration=True, encoding="UTF-16")

            # Writing data in xml file
            with open(str(xml_file_name), 'wb') as f:
                f.write(tree_output)

            # Show message:
            update_progress(msg="Conversion done", progress=1.0, btn_style=wx.OK)
            time.sleep(2)
        except Exception as e:
            # Do some error handling
            return wait_for_stopevent(str(e))
        finally:
            # Close file and connection.
            if data_file:
                data_file.close()
            time.sleep(2)




nslconvertidatxtab.py
#!/usr/bin/env python

##############################################################################
##
## Copyright (C) 2021 Narda Safety Test Solutions GmbH.
## Contact: www.narda-sts.com
##
## Redistribution and use in source and binary forms,
## with or without modification, are permitted provided that the following
## conditions are met:
##
## 1.) Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
##
## 2.) Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## 3.) Neither the name of the copyright holder nor the names of its
## contributors may be used to endorse or promote products derived from this
## software without specific prior written permission.
##
## 4.) EXPORT CONTROL
## The Software, including technical data /cryptographic software,
## may be subject to, German, European Union and U.S. export controls and
## may be subject to import or export controls in other countries.
## The Licensee agrees to strictly comply with all applicable import and
## export regulations. He specifically agrees, that he must not disclose or
## otherwise export or re-export the Licensed Software or any part thereof
## delivered under this end user license agreement (EULA) to any country
## (including a national or resident of such country) without a valid export
## or import license. Please be aware that the Software may contain
## US-Content, therefor the Licensee represent and warrant that he is not a
## citizen of, or otherwise located within, an embargoed nation (including
## without limitation Iran, Syria, Sudan, Cuba, North Korea) and that he is
## not otherwise prohibited under the Export Laws from receiving the Software.
## All rights to Use the Software are granted on condition that such rights
## are forfeited if the Licensee fails to comply with
## the terms of this Agreement.
##
## 5.) SEVERABILITY
## Should any provision of this Agreement be or become invalid, ineffective
## or unenforceable, the remaining provisions of this Agreement shall be
## valid. The parties agree to replace the invalid, ineffective or
## unenforceable provision by a valid, effective and enforceable provision
## which best meets the commercial intention of the parties.
## The same shall apply in case of omissions.
##
## 6.) APPLICABLE LAW AND PLACE OF JURISTICATION
## This Agreement shall be constituted under the law of Germany.
## The United Nations Convention on the International Sale of Goods
## shall not apply to this Agreement. The Place of Jurisdiction for any
## dispute between the Parties shall be Tübingen (Germany).
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
## “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
## TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
## PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Narda Safety Test Solutions GmbH
## BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
## CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
## SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
## INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
## CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
## ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
## POSSIBILITY OF SUCH DAMAGE.
##
##############################################################################


from pathlib import Path
import wx
from nardascripting.base.usrscriptbase import *
from nardascripting.base.signalsharkdev import *
from nardascripting.base.measthread import *
import nardascripting.base.toolbox as tb
import time
from lxml import etree as ET
import csv


class ConvertTxTab(UsrScriptBase):
    """User script class"""

    def __init__(self, main_gui, dev=SignalSharkDev()):
        """Initialization. Please leave this line unchanged"""
        super().__init__(main_gui, dev, __file__)

        # Script settings.
        # -------------------------------------------------------------------------------
        # Please adapt the following lines of code according to your script.
        self._tab_name = "nslconverter"
        self._scr_title = "Convert IDA to SignalShark tx table V1.1"
        self._scr_description = "Converts IDA CSV based Tx table to XML based SignalShark Tx table V1.0"
        # self._icon_path = self.script_path.joinpath("NardaScriptLauncher_example01.png")
        self._list_prio = 3
        self._nsl_executed_behavior = NSL_Executed_Behaviors.MINIMIZE_NSL

        # Add class variables if needed
        # -------------------------------------------------------------------------------
        # self.my_variable = None

    def _run_script(self, args):
        """
        Script main function
        This method is called when a user clicks on the corresponding script button.
        """

        # Show file browser for file selection:
        dlg = wx.FileDialog(self.frm_dlghelper, "Open IDA Tx table", "", "",
                            "CSV files (*.csv)|*.csv",
                            wx.FD_OPEN | wx.FD_FILE_MUST_EXIST)
        self.ShowDlgModalTop(dlg)
        file2convert = dlg.GetPath()
        dlg.Destroy()
        if not file2convert:
            self.MessageBoxModal("No valid file selected.", "Info",
                                 wx.OK | wx.ICON_INFORMATION)
            return
        file_name = file2convert

        # Determine destination folder:
        csv_file_path = Path(file_name)
        result_folder = csv_file_path.parent
        SignalShark_txtab_path = Path("D:\\Narda_SignalShark\\Configuration\\TransmitterTables")
        if SignalShark_txtab_path.exists():
            if self.MessageBoxModal(
                    "Should the result be saved directly "
                    "into the transmitter table folder of SignalShark ({})?".format(SignalShark_txtab_path),
                    "Save to TxTable folder?", wx.YES_NO | wx.ICON_QUESTION) == wx.YES:
                result_folder = SignalShark_txtab_path

        # Create an additional measurement thread to keep the GUI alive.
        # With "args=[param1, parm2, paramn]" you can pass some optional parameters to the measurement thread.
        mthread = MeasDlgThread(main_gui=self.main_gui, callback=ConvertTxTab._run_measurement,
                                args=[file_name, result_folder])

        # Start the measurement thread and show a visualization (progress) dialog.
        dlg_result = mthread.start_measurement()
        if dlg_result == wx.ID_OK:
            self.main_gui.MessageBoxModal("Conversion done.", "Info")
        else:
            self.main_gui.MessageBoxModal("Conversion canceled.", "Info")

    @staticmethod
    def _run_measurement(stopevent, update_progress, wait_for_stopevent, file_name: str, result_folder: Path):
        """ Main method of the measurement thread that handles a time consuming measurement.

        :param stopevent: Thread flag that indicates whether the procedure should be finished/cancelled
        :param update_progress: Delegate method to update a progress bar, message string and icon
        :param wait_for_stopevent: Delegate method to wait until stopevent is raised with possibility to show a message.
        :param file_name: Custom parameter to handover the file(name) to convert.
        :param result_folder: Custom parameter to handover the target folder.
        :return:
        """
        # Prepare progress value calculation. Progress is a value from 0.0 to 1.0
        # Open csv file:
        # -------------------------------------------------------------------------------
        data_file = None
        try:
            # Generate xml filename:
            # -------------------------------------------------------------------------------
            csv_file_path = Path(file_name)
            txtable_name = csv_file_path.name.replace(".csv", "")
            xml_file_name = result_folder.joinpath(txtable_name + ".xml")

            # Prepare progress value calculation. Progress is a value from 0.0 to 1.0
            # Open csv file:
            # -------------------------------------------------------------------------------
            data_file = open(file_name, "r")
            csv_reader = csv.reader(data_file, delimiter=";")

            # Get number of lines for progress bar
            lines = sum(1 for _ in csv_reader)
            data_file.seek(0)
            progress = 0.0
            progress_step = 1.0 / lines

            # Show Message "Conversion in progress"
            update_progress(msg="Conversion in progress", progress=0.0, btn_style=wx.CANCEL)

            # Create xml root node
            xml_doc = ET.Element('Narda_3300_TransmitterTable')

            count = 1
            label = 1
            check_cnt = 0
            longname = ""
            # Create xml additional nodes with corresponding attributes
            for _ in csv_reader:

                # Periodically check whether the user has clicked the cancel button,
                # If yes, exit thread after allowing the stop event to synchronize.
                stopevent.wait(0.05)
                if stopevent.is_set():
                    return

                if count == 1:
                    longname = _[1]

                elif count == 2:
                    shortname = _[1]
                    sub_node = ET.SubElement(xml_doc, 'Info')
                    ET.SubElement(sub_node, 'ShortName', type='string', size='1').text = str(shortname)
                    ET.SubElement(sub_node, 'Comment', type='string', size='1').text = str(longname)

                elif count == 3:
                    sub_node = ET.SubElement(xml_doc, 'Data')
                    ET.SubElement(sub_node, 'SortCriterion', type='ENUM_PARAM_TRANSMITTER_TABLE_SORT_CRITERIA', size='1'
                                  ).text = 'TRANSMITTER_FCENT'
                    ET.SubElement(sub_node, 'SortOrder', type='ENUM_PARAM_TRANSMITTER_TABLE_SORT_ORDER', size='1'
                                  ).text = 'ASC'
                    ET.SubElement(sub_node, 'NoOfTransmitters', type='ulong', size='1'
                                  ).text = str(lines - 3)

                else:
                    sub_node = ET.SubElement(xml_doc, 'Tx{:0>4}'.format(label))
                    ET.SubElement(sub_node, 'Name', type='string', size='1').text = _[0]
                    ET.SubElement(sub_node, 'Fcent', type='double', size='1').text = _[1]
                    ET.SubElement(sub_node, 'CBW', type='double', size='1').text = _[2]
                    ET.SubElement(sub_node, 'ExpectedSignalType', type='string', size='1')
                    ET.SubElement(sub_node, 'Comment', type='string', size='1')
                    ET.SubElement(sub_node, 'AnalogAudioDemodType', type='ENUM_PARAM_ANALOG_AUDIO_DEMOD_TYPES', size='1'
                                  ).text = 'UNKNWON'
                    label += 1
                count += 1
                progress += progress_step
                update_progress(progress=progress)

            # Retaining xml tree structure and defining encoding
            tree_output = ET.tostring(xml_doc, pretty_print=True, xml_declaration=True, encoding="UTF-16")

            # Writing data in xml file
            with open(str(xml_file_name), 'wb') as f:
                f.write(tree_output)

            # Show message:
            update_progress(msg="Conversion done", progress=1.0, btn_style=wx.OK)
            time.sleep(1)
        except Exception as e:
            # Do some error handling
            return wait_for_stopevent(str(e))
        finally:
            # Close file and connection.
            if data_file:
                data_file.close()




nslconvertsgram.py
#!/usr/bin/env python

##############################################################################
##
## Copyright (C) 2021 Narda Safety Test Solutions GmbH.
## Contact: www.narda-sts.com
##
## Redistribution and use in source and binary forms,
## with or without modification, are permitted provided that the following
## conditions are met:
##
## 1.) Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
##
## 2.) Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## 3.) Neither the name of the copyright holder nor the names of its
## contributors may be used to endorse or promote products derived from this
## software without specific prior written permission.
##
## 4.) EXPORT CONTROL
## The Software, including technical data /cryptographic software,
## may be subject to, German, European Union and U.S. export controls and
## may be subject to import or export controls in other countries.
## The Licensee agrees to strictly comply with all applicable import and
## export regulations. He specifically agrees, that he must not disclose or
## otherwise export or re-export the Licensed Software or any part thereof
## delivered under this end user license agreement (EULA) to any country
## (including a national or resident of such country) without a valid export
## or import license. Please be aware that the Software may contain
## US-Content, therefor the Licensee represent and warrant that he is not a
## citizen of, or otherwise located within, an embargoed nation (including
## without limitation Iran, Syria, Sudan, Cuba, North Korea) and that he is
## not otherwise prohibited under the Export Laws from receiving the Software.
## All rights to Use the Software are granted on condition that such rights
## are forfeited if the Licensee fails to comply with
## the terms of this Agreement.
##
## 5.) SEVERABILITY
## Should any provision of this Agreement be or become invalid, ineffective
## or unenforceable, the remaining provisions of this Agreement shall be
## valid. The parties agree to replace the invalid, ineffective or
## unenforceable provision by a valid, effective and enforceable provision
## which best meets the commercial intention of the parties.
## The same shall apply in case of omissions.
##
## 6.) APPLICABLE LAW AND PLACE OF JURISTICATION
## This Agreement shall be constituted under the law of Germany.
## The United Nations Convention on the International Sale of Goods
## shall not apply to this Agreement. The Place of Jurisdiction for any
## dispute between the Parties shall be Tübingen (Germany).
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
## “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
## TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
## PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Narda Safety Test Solutions GmbH
## BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
## CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
## SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
## INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
## CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
## ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
## POSSIBILITY OF SUCH DAMAGE.
##
##############################################################################


from pathlib import Path
import wx
from nardascripting.base.usrscriptbase import *
from nardascripting.base.signalsharkdev import *
from nardascripting.base.measthread import *
import nardascripting.base.toolbox as tb
import time
import h5py
import csv
import numpy as np


class ConvertSgramToCSV(UsrScriptBase):
    """User script class"""

    def __init__(self, main_gui, dev=SignalSharkDev()):
        """Initialization. Please leave this line unchanged"""
        super().__init__(main_gui, dev, __file__)

        # Script settings.
        # -------------------------------------------------------------------------------
        # Please adapt the following lines of code according to your script.
        self._tab_name = "nslconverter"
        self._scr_title = "Convert SignalShark Spectrogram Data to CSV V1.1"
        self._scr_description = "Converts SignalShark spectrogram data from HDF5-file to CSV-file(s). " \
                                "Several Tasks will be divided into separate CSV files."
        # self._icon_path = self.script_path.joinpath("NardaScriptLauncher_example01.png")
        self._list_prio = 2
        self._nsl_executed_behavior = NSL_Executed_Behaviors.MINIMIZE_NSL

        # Add class variables if needed
        # -------------------------------------------------------------------------------
        # self.my_variable = None

    def _run_script(self, args):
        """
        Script main function
        This method is called when a user clicks on the corresponding script button.
        """

        # Show file browser for file selection:
        dlg = wx.FileDialog(self.frm_dlghelper, "Open SignalShark HDF5 file", "", "",
                            "HDF5 files (*.h5)|*.h5",
                            wx.FD_OPEN | wx.FD_FILE_MUST_EXIST)

        self.ShowDlgModalTop(dlg)
        file2convert = dlg.GetPath()
        dlg.Destroy()
        if not file2convert:
            self.MessageBoxModal("No valid file selected.", "Info",
                                 wx.OK | wx.ICON_INFORMATION)
            return

        filepath = Path(file2convert)

        # Create an additional measurement thread to keep the GUI alive.
        # With "args=[param1, parm2, paramn]" you can pass some optional parameters to the measurement thread.
        mthread = MeasDlgThread(main_gui=self.main_gui, callback=ConvertSgramToCSV._run_measurement,
                                args=[filepath])

        # Start the measurement thread and show a visualization (progress) dialog.
        dlg_result = mthread.start_measurement()

        if dlg_result == wx.ID_OK:
            self.main_gui.MessageBoxModal("Conversion done.", "Info")
        else:
            self.main_gui.MessageBoxModal("Conversion canceled.", "Info")

    @staticmethod
    def _run_measurement(stopevent, update_progress, wait_for_stopevent, filepath: Path):
        """ Main method of the measurement thread that handles a time consuming measurement.

        :param stopevent: Thread flag that indicates whether the procedure should be finished/cancelled
        :param update_progress: Delegate method to update a progress bar, message string and icon
        :param wait_for_stopevent: Delegate method to wait until stopevent is raised with possibility to show a message.
        :param filepath: Custom parameter
        :return:
        """
        # Initialize return value (if any)
        # succeeded = False
        try:
            # Prepare progress value calculation. Progress is a value from 0.0 to 1.0
            steps = 0.0
            with h5py.File(str(filepath), 'r') as f:
                # Loop through all Tasks
                for task_id in f:
                    task = f.get(task_id)
                    task_type = str(task.attrs["Task type"][0]).replace("\'", "")
                    # Check if file contains a (RT) Spectrum Task:
                    if task_type == "bSpectrum" or task_type == "bRT Spectrum":

                        # Check if (RT) Spectrum Task contains a Spectrogram
                        Spectrogram = task.get("Spectrogram")
                        if Spectrogram:
                            steps += len(Spectrogram)

            update_cnt = 0
            progress = 0.0
            progress_step = 1.0 / steps

            # Show Message "Conversion in progress"
            update_progress(msg="Conversion in progress", progress=0.0, btn_style=wx.CANCEL)

            # Open file to convert:
            with h5py.File(str(filepath), 'r') as f:
                # Loop through all Tasks
                for task_id in f:
                    task = f.get(task_id)
                    task_type = str(task.attrs["Task type"][0]).replace("\'", "")

                    # Check if file contains a (RT) Spectrum Task:
                    if task_type == "bSpectrum" or task_type == "bRT Spectrum":

                        # Check if (RT) Spectrum Task contains a Spectrogram
                        Spectrogram = task.get("Spectrogram")
                        if Spectrogram:
                            # Create name for new csv file:
                            filename = Path(filepath.parent).joinpath(
                                filepath.stem + "-" + task_id + "-Spectrogram.csv")

                            # Write data to csv file
                            # -----------------------------------------------------------------------------------------
                            with open(filename, 'w', newline='') as f2:
                                writer = csv.writer(f2, delimiter=',')
                                # Write csv header information for measurement settings
                                writer.writerow(["Description", "Value"])
                                writer.writerow(["Binwidth / Hz", Spectrogram.attrs["Binwidth / Hz"][0]])
                                writer.writerow(
                                    ["Frequency of first bin / Hz",
                                     Spectrogram.attrs["Frequency of first bin / Hz"][0]])
                                writer.writerow(["Number of bins", Spectrogram.attrs["Number of bins"][0]])
                                writer.writerow(["Number of frames", Spectrogram.attrs["Number of frames"][0]])
                                writer.writerow(["Level unit", Spectrogram.attrs["Level unit"][0]])
                                writer.writerow(["Measurement time / s", Spectrogram.attrs["Measurement time / s"][0]])
                                writer.writerow(["RBW / Hz", Spectrogram.attrs["RBW / Hz"][0]])
                                writer.writerow(["Reference level", Spectrogram.attrs["Reference level"][0]])
                                writer.writerow(["Attenuator / dB", Spectrogram.attrs["Attenuator / dB"][0]])
                                writer.writerow(["Geolocation latitude / degree",
                                                 Spectrogram.attrs["Geolocation latitude / degree"][0]])
                                writer.writerow(["Geolocation longitude / degree",
                                                 Spectrogram.attrs["Geolocation longitude / degree"][0]])

                                # Add 2 lines space here
                                spacer = 0
                                while spacer < 2:
                                    writer.writerow("")
                                    spacer += 1

                                # Write csv header row for spectrogram table
                                writer.writerow(list(Spectrogram.dtype.names))

                                # Write spectrogram data:
                                for row_data in Spectrogram:
                                    row_list = []
                                    count = len(row_data)
                                    for x in range(count):
                                        row_list.append(np.array2string(row_data[x],
                                                                        max_line_width=1000000000, separator=','))
                                    writer.writerow(row_list)

                                    # calculate actual progress and update dialog all 100 steps
                                    progress += progress_step
                                    update_cnt += 1
                                    if update_cnt == 100:
                                        update_cnt = 0
                                        update_progress(progress=progress)

                                        # Allow the thread to synchronize the stop event.
                                        stopevent.wait(0.05)
                                        # Periodically check, whether the user has clicked the cancel button,
                                        # and exit thread if so.
                                        if stopevent.is_set():
                                            return

            # Show message:
            update_progress(msg="Conversion done", progress=1.0, btn_style=wx.OK)
            time.sleep(1)
        except Exception as e:
            # Do some error handling
            return wait_for_stopevent(str(e))




nslconvertspectrum.py
#!/usr/bin/env python

##############################################################################
##
## Copyright (C) 2021 Narda Safety Test Solutions GmbH.
## Contact: www.narda-sts.com
##
## Redistribution and use in source and binary forms,
## with or without modification, are permitted provided that the following
## conditions are met:
##
## 1.) Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
##
## 2.) Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## 3.) Neither the name of the copyright holder nor the names of its
## contributors may be used to endorse or promote products derived from this
## software without specific prior written permission.
##
## 4.) EXPORT CONTROL
## The Software, including technical data /cryptographic software,
## may be subject to, German, European Union and U.S. export controls and
## may be subject to import or export controls in other countries.
## The Licensee agrees to strictly comply with all applicable import and
## export regulations. He specifically agrees, that he must not disclose or
## otherwise export or re-export the Licensed Software or any part thereof
## delivered under this end user license agreement (EULA) to any country
## (including a national or resident of such country) without a valid export
## or import license. Please be aware that the Software may contain
## US-Content, therefor the Licensee represent and warrant that he is not a
## citizen of, or otherwise located within, an embargoed nation (including
## without limitation Iran, Syria, Sudan, Cuba, North Korea) and that he is
## not otherwise prohibited under the Export Laws from receiving the Software.
## All rights to Use the Software are granted on condition that such rights
## are forfeited if the Licensee fails to comply with
## the terms of this Agreement.
##
## 5.) SEVERABILITY
## Should any provision of this Agreement be or become invalid, ineffective
## or unenforceable, the remaining provisions of this Agreement shall be
## valid. The parties agree to replace the invalid, ineffective or
## unenforceable provision by a valid, effective and enforceable provision
## which best meets the commercial intention of the parties.
## The same shall apply in case of omissions.
##
## 6.) APPLICABLE LAW AND PLACE OF JURISTICATION
## This Agreement shall be constituted under the law of Germany.
## The United Nations Convention on the International Sale of Goods
## shall not apply to this Agreement. The Place of Jurisdiction for any
## dispute between the Parties shall be Tübingen (Germany).
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
## “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
## TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
## PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Narda Safety Test Solutions GmbH
## BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
## CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
## SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
## INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
## CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
## ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
## POSSIBILITY OF SUCH DAMAGE.
##
##############################################################################


from pathlib import Path
import wx
from nardascripting.base.usrscriptbase import *
from nardascripting.base.signalsharkdev import *
from nardascripting.base.measthread import *
import nardascripting.base.toolbox as tb
import time
import h5py
import csv
import numpy as np


class ConvertSpectrumToCSV(UsrScriptBase):
    """User script class"""

    def __init__(self, main_gui, dev=SignalSharkDev()):
        """Initialization. Please leave this line unchanged"""
        super().__init__(main_gui, dev, __file__)

        # Script settings.
        # -------------------------------------------------------------------------------
        # Please adapt the following lines of code according to your script.
        self._tab_name = "nslconverter"
        self._scr_title = "Convert SignalShark Spectrum Data to CSV V1.1"
        self._scr_description = "Converts SignalShark spectrum data from HDF5-file to CSV-file(s). " \
                                "Several Tasks will be divided into separate CSV files."
        # self._icon_path = self.script_path.joinpath("NardaScriptLauncher_example01.png")
        self._list_prio = 1
        self._nsl_executed_behavior = NSL_Executed_Behaviors.MINIMIZE_NSL

        # Add class variables if needed
        # -------------------------------------------------------------------------------
        # self.my_variable = None

    def _run_script(self, args):
        """
        Script main function
        This method is called when a user clicks on the corresponding script button.
        """

        # Show file browser for file selection:
        dlg = wx.FileDialog(self.frm_dlghelper, "Open SignalShark HDF5 file", "", "",
                            "HDF5 files (*.h5)|*.h5",
                            wx.FD_OPEN | wx.FD_FILE_MUST_EXIST)

        self.ShowDlgModalTop(dlg)
        file2convert = dlg.GetPath()
        dlg.Destroy()
        if not file2convert:
            self.MessageBoxModal("No valid file selected.", "Info",
                                 wx.OK | wx.ICON_INFORMATION)
            return

        filepath = Path(file2convert)

        # Create an additional measurement thread to keep the GUI alive.
        # With "args=[param1, parm2, paramn]" you can pass some optional parameters to the measurement thread.
        mthread = MeasDlgThread(main_gui=self.main_gui, callback=ConvertSpectrumToCSV._run_measurement,
                                args=[filepath])

        # Start the measurement thread and show a visualization (progress) dialog.
        dlg_result = mthread.start_measurement()
        if dlg_result == wx.ID_OK:
            self.main_gui.MessageBoxModal("Conversion done.", "Info")
        else:
            self.main_gui.MessageBoxModal("Conversion canceled.", "Info")

    @staticmethod
    def _run_measurement(stopevent, update_progress, wait_for_stopevent, filepath: Path):
        """ Main method of the measurement thread that handles a time consuming measurement.

        :param stopevent: Thread flag that indicates whether the procedure should be finished/cancelled
        :param update_progress: Delegate method to update a progress bar, message string and icon
        :param wait_for_stopevent: Delegate method to wait until stopevent is raised with possibility to show a message.
        :param filepath: Custom parameter
        :return:
        """
        # Initialize return value (if any)
        # succeeded = False
        try:
            # Prepare progress value calculation. Progress is a value from 0.0 to 1.0
            steps = 0.0
            with h5py.File(str(filepath), 'r') as f:
                # Loop through all Tasks
                for task_id in f:
                    task = f.get(task_id)
                    task_type = str(task.attrs["Task type"][0]).replace("\'", "")
                    # Check if file contains a (RT) Spectrum Task:
                    if task_type == "bSpectrum" or task_type == "bRT Spectrum":
                        # Check if RT Spectrum Task contains a Spectrum
                        Spectrum = task.get("Spectrum")
                        if Spectrum:
                            steps += len(Spectrum)
            update_cnt = 0
            progress = 0.0
            progress_step = 1.0 / steps

            # Show Message "Conversion in progress"
            update_progress(msg="Conversion in progress", progress=0.0, btn_style=wx.CANCEL)

            # Open file to convert:
            with h5py.File(str(filepath), 'r') as f:
                # Loop through all Tasks
                for task_id in f:
                    task = f.get(task_id)
                    task_type = str(task.attrs["Task type"][0]).replace("\'", "")

                    # Check if file contains a (RT) Spectrum Task:
                    if task_type == "bSpectrum" or task_type == "bRT Spectrum":
                        # Check if (RT) Spectrum Task contains a Spectrum
                        Spectrum = task.get("Spectrum")
                        if Spectrum:
                            # Create name for new csv file:
                            filename = Path(filepath.parent).joinpath(filepath.stem + "-" + task_id + "-Spectrum.csv")

                            # Write data to csv file
                            # -----------------------------------------------------------------------------------------
                            with open(filename, 'w', newline='') as f2:
                                writer = csv.writer(f2, delimiter=',')
                                # Write csv header information for measurement settings
                                writer.writerow(["Description", "Value"])
                                writer.writerow(["Binwidth / Hz", Spectrum.attrs["Binwidth / Hz"][0]])
                                writer.writerow(
                                    ["Frequency of first bin / Hz", Spectrum.attrs["Frequency of first bin / Hz"][0]])
                                writer.writerow(["Number of bins", Spectrum.attrs["Number of bins"][0]])
                                writer.writerow(["Level unit", Spectrum.attrs["Level unit"][0]])
                                writer.writerow(["Measurement time / s", Spectrum.attrs["Measurement time / s"][0]])
                                writer.writerow(["RBW / Hz", Spectrum.attrs["RBW / Hz"][0]])
                                writer.writerow(["Reference level", Spectrum.attrs["Reference level"][0]])
                                writer.writerow(["Attenuator / dB", Spectrum.attrs["Attenuator / dB"][0]])
                                writer.writerow(["Geolocation latitude / degree",
                                                 Spectrum.attrs["Geolocation latitude / degree"][0]])
                                writer.writerow(["Geolocation longitude / degree",
                                                 Spectrum.attrs["Geolocation longitude / degree"][0]])

                                # Add 2 lines space here
                                spacer = 0
                                while spacer < 2:
                                    writer.writerow("")
                                    spacer += 1

                                # Construct Frequency Array
                                f_bins = int(Spectrum.attrs["Number of bins"][0])
                                freq_val = []
                                for index in range(f_bins):
                                    value = (Spectrum.attrs["Frequency of first bin / Hz"][0]) + (
                                                index * (Spectrum.attrs["Binwidth / Hz"][0]))
                                    freq_val.append(value)

                                # Write csv header row for spectrum table and add Frequency to it
                                a = list(Spectrum.dtype.names)
                                a.insert(0, "Frequency")
                                # writer.writerow(list(Spectrum.dtype.names))
                                writer.writerow(a)

                                # Write spectrum data:
                                for index, row_data in enumerate(Spectrum):
                                    row_list = [freq_val[index]]
                                    count = len(row_data)
                                    for x in range(count):
                                        row_list.append(np.array2string(row_data[x],
                                                                        max_line_width=10000000000, separator=','))
                                    writer.writerow(row_list)

                                    # calculate actual progress and update dialog all 100 steps
                                    progress += progress_step
                                    update_cnt += 1
                                    if update_cnt == 100:
                                        update_cnt = 0
                                        update_progress(progress=progress)

                                        # Allow the thread to synchronize the stop event.
                                        stopevent.wait(0.05)
                                        # Periodically check, whether the user has clicked the cancel button,
                                        # and exit thread if so.
                                        if stopevent.is_set():
                                            return

            # Show message:
            update_progress(msg="Conversion done", progress=1.0, btn_style=wx.OK)
            time.sleep(1)
        except Exception as e:
            # Do some error handling
            return wait_for_stopevent(str(e))




nslconvertsrmstab.py
#!/usr/bin/env python

##############################################################################
##
## Copyright (C) 2021 Narda Safety Test Solutions GmbH.
## Contact: www.narda-sts.com
##
## Redistribution and use in source and binary forms,
## with or without modification, are permitted provided that the following
## conditions are met:
##
## 1.) Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
##
## 2.) Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## 3.) Neither the name of the copyright holder nor the names of its
## contributors may be used to endorse or promote products derived from this
## software without specific prior written permission.
##
## 4.) EXPORT CONTROL
## The Software, including technical data /cryptographic software,
## may be subject to, German, European Union and U.S. export controls and
## may be subject to import or export controls in other countries.
## The Licensee agrees to strictly comply with all applicable import and
## export regulations. He specifically agrees, that he must not disclose or
## otherwise export or re-export the Licensed Software or any part thereof
## delivered under this end user license agreement (EULA) to any country
## (including a national or resident of such country) without a valid export
## or import license. Please be aware that the Software may contain
## US-Content, therefor the Licensee represent and warrant that he is not a
## citizen of, or otherwise located within, an embargoed nation (including
## without limitation Iran, Syria, Sudan, Cuba, North Korea) and that he is
## not otherwise prohibited under the Export Laws from receiving the Software.
## All rights to Use the Software are granted on condition that such rights
## are forfeited if the Licensee fails to comply with
## the terms of this Agreement.
##
## 5.) SEVERABILITY
## Should any provision of this Agreement be or become invalid, ineffective
## or unenforceable, the remaining provisions of this Agreement shall be
## valid. The parties agree to replace the invalid, ineffective or
## unenforceable provision by a valid, effective and enforceable provision
## which best meets the commercial intention of the parties.
## The same shall apply in case of omissions.
##
## 6.) APPLICABLE LAW AND PLACE OF JURISTICATION
## This Agreement shall be constituted under the law of Germany.
## The United Nations Convention on the International Sale of Goods
## shall not apply to this Agreement. The Place of Jurisdiction for any
## dispute between the Parties shall be Tübingen (Germany).
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
## “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
## TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
## PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Narda Safety Test Solutions GmbH
## BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
## CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
## SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
## INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
## CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
## ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
## POSSIBILITY OF SUCH DAMAGE.
##
##############################################################################


from pathlib import Path
import wx
from nardascripting.base.usrscriptbase import *
from nardascripting.base.signalsharkdev import *
from nardascripting.base.measthread import *
import nardascripting.base.toolbox as tb
import time
from lxml import etree as ET
import csv


class ConvertTxTab(UsrScriptBase):
    """User script class"""

    def __init__(self, main_gui, dev=SignalSharkDev()):
        """Initialization. Please leave this line unchanged"""
        super().__init__(main_gui, dev, __file__)

        # Script settings.
        # -------------------------------------------------------------------------------
        # Please adapt the following lines of code according to your script.
        self._tab_name = "nslconverter"
        self._scr_title = "Convert SRM Service Table V1.1"
        self._scr_description = "Converts CSV based SRM service table to SignalShark XML based tx table"
        # self._icon_path = self.script_path.joinpath("NardaScriptLauncher_example01.png")
        self._list_prio = 4
        self._nsl_executed_behavior = NSL_Executed_Behaviors.MINIMIZE_NSL

        # Add class variables if needed
        # -------------------------------------------------------------------------------
        # self.my_variable = None

    def _run_script(self, args):
        """
        Script main function
        This method is called when a user clicks on the corresponding script button.
        """

        # Show file browser for file selection:
        dlg = wx.FileDialog(self.frm_dlghelper, "Open SRM Service Table", "", "",
                            "CSV files (*.csv)|*.csv",
                            wx.FD_OPEN | wx.FD_FILE_MUST_EXIST)
        self.ShowDlgModalTop(dlg)
        file2convert = dlg.GetPath()
        dlg.Destroy()
        if not file2convert:
            self.MessageBoxModal("No valid file selected.", "Info",
                                 wx.OK | wx.ICON_INFORMATION)
            return
        file_name = file2convert

        # Determine destination folder:
        csv_file_path = Path(file_name)
        result_folder = csv_file_path.parent
        SignalShark_txtab_path = Path("D:\\Narda_SignalShark\\Configuration\\TransmitterTables")
        if SignalShark_txtab_path.exists():
            if self.MessageBoxModal(
                    "Should the result be saved directly "
                    "into the transmitter table folder of SignalShark ({})?".format(SignalShark_txtab_path),
                    "Save to TxTable folder?", wx.YES_NO | wx.ICON_QUESTION) == wx.YES:
                result_folder = SignalShark_txtab_path

        # Create an additional measurement thread to keep the GUI alive.
        # With "args=[param1, parm2, paramn]" you can pass some optional parameters to the measurement thread.
        mthread = MeasDlgThread(main_gui=self.main_gui, callback=ConvertTxTab._run_measurement,
                                args=[file_name, result_folder])

        # Start the measurement thread and show a visualization (progress) dialog.
        dlg_result = mthread.start_measurement()

        if dlg_result == wx.ID_OK:
            self.main_gui.MessageBoxModal("Conversion done.", "Info")
        else:
            self.main_gui.MessageBoxModal("Conversion canceled.", "Info")

    @staticmethod
    def _run_measurement(stopevent, update_progress, wait_for_stopevent, file_name: str, result_folder: Path):
        """ Main method of the measurement thread that handles a time consuming measurement.

        :param stopevent: Thread flag that indicates whether the procedure should be finished/cancelled
        :param update_progress: Delegate method to update a progress bar, message string and icon
        :param wait_for_stopevent: Delegate method to wait until stopevent is raised with possibility to show a message.
        :param file_name: Custom parameter to handover the file(name) to convert.
        :param result_folder: Custom parameter to handover the target folder.
        :return:
        """
        # Prepare progress value calculation. Progress is a value from 0.0 to 1.0
        # Open csv file:
        # -------------------------------------------------------------------------------
        data_file = None
        try:
            # Generate xml filename:
            # -------------------------------------------------------------------------------
            csv_file_path = Path(file_name)
            txtable_name = csv_file_path.name.replace(".csv", "")
            xml_file_name = result_folder.joinpath(txtable_name + ".xml")

            # Prepare progress value calculation. Progress is a value from 0.0 to 1.0
            # Open csv file:
            # -------------------------------------------------------------------------------
            data_file = open(file_name, "r")
            csv_reader = csv.reader(data_file, delimiter="\t")

            # Get number of lines for progress bar
            lines = sum(1 for _ in csv_reader)
            data_file.seek(0)
            progress = 0.0
            progress_step = 1.0 / lines

            # Show Message "Conversion in progress"
            update_progress(msg="Conversion in progress", progress=0.0, btn_style=wx.CANCEL)

            count = 1
            label = 1
            shortname = ""
            xml_doc = ""
            freq_units_dict = {
                "Hz": 1,
                "kHz": 1000,
                "MHz": 1000000,
                "GHz": 1000000000
            }

            # Create xml nodes with corresponding attributes
            for _ in csv_reader:
                # Periodically check whether the user has clicked the cancel button,
                # If yes, exit thread after allowing the stop event to synchronize.
                stopevent.wait(0.05)
                if stopevent.is_set():
                    return

                if count == 1:
                    # Create xml root node
                    xml_doc = ET.Element('Narda_3300_TransmitterTable')

                elif count == 2 or count == 6:
                    pass

                elif count == 3:
                    shortname = _[1]

                elif count == 4:
                    # Create xml sub node for info
                    longname = _[1]
                    sub_node = ET.SubElement(xml_doc, 'Info')
                    ET.SubElement(sub_node, 'ShortName', type='string', size='1').text = str(shortname)
                    ET.SubElement(sub_node, 'Comment', type='string', size='1').text = str(longname)

                elif count == 5:
                    # Create xml sub node for data
                    sub_node = ET.SubElement(xml_doc, 'Data')
                    ET.SubElement(sub_node, 'SortCriterion', type='ENUM_PARAM_TRANSMITTER_TABLE_SORT_CRITERIA', size='1'
                                  ).text = 'TRANSMITTER_FCENT'
                    ET.SubElement(sub_node, 'SortOrder', type='ENUM_PARAM_TRANSMITTER_TABLE_SORT_ORDER', size='1'
                                  ).text = 'ASC'
                    ET.SubElement(sub_node, 'NoOfTransmitters', type='ulong', size='1'
                                  ).text = str(lines - 6)

                else:
                    # Frequency Calculations
                    f_start = float(_[0]) * freq_units_dict.get(str(_[1]))
                    f_stop = float(_[2]) * freq_units_dict.get(str(_[3]))
                    cbw_calc = f_stop - f_start
                    fcent_calc = f_start + (cbw_calc / 2.0)
                    rbw_calc = float(_[5]) * freq_units_dict.get(str(_[6]))

                    # Filling the subnode data
                    sub_node = ET.SubElement(xml_doc, 'Tx{:0>4}'.format(label))
                    ET.SubElement(sub_node, 'Name', type='string', size='1').text = _[4]
                    ET.SubElement(sub_node, 'Fcent', type='double', size='1').text = str(fcent_calc)
                    ET.SubElement(sub_node, 'CBW', type='double', size='1').text = str(cbw_calc)
                    ET.SubElement(sub_node, 'ExpectedSignalType', type='string', size='1')
                    ET.SubElement(sub_node, 'Comment', type='string', size='1').text = "RBW: " + str(rbw_calc)
                    ET.SubElement(sub_node, 'AnalogAudioDemodType', type='ENUM_PARAM_ANALOG_AUDIO_DEMOD_TYPES', size='1'
                                  ).text = 'UNKNWON'
                    label += 1
                count += 1
                update_progress(progress=progress)
                progress += progress_step

            # Retaining xml tree structure and defining encoding
            tree_output = ET.tostring(xml_doc, pretty_print=True, xml_declaration=True, encoding="UTF-16")

            # Writing data in xml file
            with open(str(xml_file_name), 'wb') as f:
                f.write(tree_output)

            # Show message:
            update_progress(msg="Conversion done", progress=1.0, btn_style=wx.OK)
            time.sleep(2)

        except Exception as e:
            # Do some error handling
            return wait_for_stopevent(str(e))
        finally:
            # Close file and connection.
            if data_file:
                data_file.close()
            time.sleep(2)




__init__.py

